The General Circulation of Two-Dimensional Turbulent Flow on a Beta Plane

1977 ◽  
Vol 34 (5) ◽  
pp. 702-712 ◽  
Author(s):  
H. Tennekes
2008 ◽  
Vol 39 (4) ◽  
pp. 347-370
Author(s):  
M. Salmanpour ◽  
O. Nourani Zonouz ◽  
Mahmood Yaghoubi

2021 ◽  
pp. 110630
Author(s):  
Seiji Kubo ◽  
Atsushi Koguchi ◽  
Kentaro Yaji ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
...  

2021 ◽  
Vol 933 ◽  
Author(s):  
Kengo Fukushima ◽  
Haruki Kishi ◽  
Hiroshi Suzuki ◽  
Ruri Hidema

An experimental study is performed to investigate the effects of the extensional rheological properties of drag-reducing wormlike micellar solutions on the vortex deformation and turbulence statistics in two-dimensional (2-D) turbulent flow. A self-standing 2-D turbulent flow was used as the experimental set-up, and the flow was observed through interference pattern monitoring and particle image velocimetry. Vortex shedding and turbulence statistics in the flow were affected by the formation of wormlike micelles and were enhanced by increasing the molar ratio of the counter-ion supplier to the surfactant, ξ, or by applying extensional stresses to the solution. In the 2-D turbulent flow, extensional and shear rates were applied to the fluids around a comb of equally spaced cylinders. This induced the formation of a structure made of wormlike micelles just behind the cylinder. The flow-induced structure influenced the velocity fields around the comb and the turbulence statistics. A characteristic increase in turbulent energy was observed, which decreased slowly downstream. The results implied that the characteristic modification of the 2-D turbulent flow of the drag-reducing surfactant solution was affected by the formation and slow relaxation of the flow-induced structure. The relaxation process of the flow-induced structure made of wormlike micelles was very different from that of the polymers.


2016 ◽  
Vol 9 (6) ◽  
pp. 2545-2565 ◽  
Author(s):  
Neil P. Hindley ◽  
Nathan D. Smith ◽  
Corwin J. Wright ◽  
D. Andrew S. Rees ◽  
Nicholas J. Mitchell

Abstract. Gravity waves (GWs) play a crucial role in the dynamics of the earth's atmosphere. These waves couple lower, middle and upper atmospheric layers by transporting and depositing energy and momentum from their sources to great heights. The accurate parameterisation of GW momentum flux is of key importance to general circulation models but requires accurate measurement of GW properties, which has proved challenging. For more than a decade, the nadir-viewing Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite has made global, two-dimensional (2-D) measurements of stratospheric radiances in which GWs can be detected. However, one problem with current one-dimensional methods for GW analysis of these data is that they can introduce significant unwanted biases. Here, we present a new analysis method that resolves this problem. Our method uses a 2-D Stockwell transform (2DST) to measure GW amplitudes, horizontal wavelengths and directions of propagation using both the along-track and cross-track dimensions simultaneously. We first test our new method and demonstrate that it can accurately measure GW properties in a specified wave field. We then show that by using a new elliptical spectral window in the 2DST, in place of the traditional Gaussian, we can dramatically improve the recovery of wave amplitude over the standard approach. We then use our improved method to measure GW properties and momentum fluxes in AIRS measurements over two regions known to be intense hotspots of GW activity: (i) the Drake Passage/Antarctic Peninsula and (ii) the isolated mountainous island of South Georgia. The significance of our new 2DST method is that it provides more accurate, unbiased and better localised measurements of key GW properties compared to most current methods. The added flexibility offered by the scaling parameter and our new spectral window presented here extend the usefulness of our 2DST method to other areas of geophysical data analysis and beyond.


2016 ◽  
Vol 33 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Lucile Gaultier ◽  
Clément Ubelmann ◽  
Lee-Lueng Fu

AbstractConventional altimetry measures a one-dimensional profile of sea surface height (SSH) along the satellite track. Two-dimensional SSH can be reconstructed using mapping techniques; however, the spatial resolution is quite coarse even when data from several altimeters are analyzed. A new satellite mission based on radar interferometry is scheduled to be launched in 2020. This mission, called Surface Water and Ocean Topography (SWOT), will measure SSH at high resolution along a wide swath, thus providing two-dimensional images of the ocean surface topography. This new capability will provide a large amount of data even though they are contaminated with instrument noise and geophysical errors. This paper presents a tool that simulates synthetic observations of SSH from the future SWOT mission using SSH from any ocean general circulation model (OGCM). SWOT-like data have been generated from a high-resolution model and analyzed to investigate the sampling and accuracy characteristics of the future SWOT data. This tool will help explore new ideas and methods for optimizing the retrieval of information from future SWOT missions.


2005 ◽  
Vol 498-499 ◽  
pp. 179-185
Author(s):  
A.F. Lacerda ◽  
Luiz Gustavo Martins Vieira ◽  
A.M. Nascimento ◽  
S.D. Nascimento ◽  
João Jorge Ribeiro Damasceno ◽  
...  

A two-dimensional fluidynamics model for turbulent flow of gas in cyclones is used to evaluate the importance of the anisotropic of the Reynolds stress components. This study presents consisted in to simulate through computational fluid dynamics (CFD) package the operation of the Lapple cyclone. Yields of velocity obtained starting from a model anisotropic of the Reynolds stress are compared with experimental data of the literature, as form of validating the results obtained through the use of the Computational fluid dynamics (Fluent). The experimental data of the axial and swirl velocities validate numeric results obtained by the model.


1973 ◽  
Vol 24 (3) ◽  
pp. 155-166 ◽  
Author(s):  
R Jackson ◽  
J M R Graham ◽  
D J Maull

SummaryExperiments are described in which the lift on a rectangular element of a two-dimensional wing and on a finite aspect ratio wing has been measured in grid turbulence. By measuring the spectrum of the lift and the spectrum of the turbulence upwash component, an experimental value for the turbulent admittance may be found. This is compared with a calculated value based upon linearised theory.


Author(s):  
G. Carnevale ◽  
A. Cenedese ◽  
S. Espa ◽  
M. Mariani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document